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Abstract – The focus of this thesis is to develop a classifier of shrub vegetation cover. Shrubs are a key 

vegetation type in dry Mediterranean climates, that is associated with an increased risk of fire. The 

classifier will be further used for sustainable land planning and grazing management for fire prevention. 

Two main objectives are 1.) to design a new dataset from an unmanned aerial vehicle (UAV) imagery using 

ordinary RGB channels and 2.) to develop a method to increase the accuracy of a convolutional neural 

network (CNN) with a U-Net architecture to detect shrubs in a complex heterogeneous forest environment 

within a study farm in Portugal. The tested methods and their feasibility for this particular task are data 

augmentation, tiling, rescaling, dataset balancing and hyperparameter tuning (namely the number of 

filters, dropout rate and batch size). The biggest improvements were recorded with data augmentation, 

tiling and rescaling practices. The developed classification model achieves an average F1 score of 0.72 on 

three separate test sets even though it is trained on a relatively small dataset with some degree of 

inaccurate labels. It takes around four hours to train the model. The major challenges identified in this 

work were precise manual image annotation, small sample size, time and memory limits of used tools, and 

high intra-class and low inter-class variance of the target vegetation class. The main contributions of this 

study are evaluating the performance of the state-of-the-art CNN for mapping fine-grained land cover 

patterns from RGB remote sensing data and proposing a method to improve the outputs.  

Keywords: U-Net, convolutional neural network (CNN), shrub detection, heterogeneous land cover mapping, UAV 

imagery, Mediterranean forest 

 

1. Introduction 

Food production is one of the major contributors to 

degradation of the environment. This sector accounts 

for approximately 26% (13.598 Gt CO2-eq/yr) of global 

greenhouse gas emissions (GHG), out of which one half 

(6.93 Gt CO2-eq/yr)1 comes from crop production and 

land use, linked to turning natural ecosystems such as 

forests and grasslands, that act as carbon “sinks”, into 

cropland and pastures, that release additional carbon 

dioxide (CO2)1. However, agricultural systems can 

become carbon sinks, if we change our food production 

systems and learn to harness ecosystem services. 

Proper sustainable management practices that are 

aligned with Earth system processes can lower our 

impact on the environemnt. One such example is cattle 

farming. Traditional livestock systems play a role in 

 
1 https://ourworldindata.org/food-ghg-emissions 

#:~:text=They%20are%20the%20direct%20emissions, 
for%2024%25%20of%20food%20emissions. 

biodiversity conservation, climate adaptation, and 

socioecological resilience at regional and local scales 

[1]. Ecological processes, such as nutrient cycling, soil 

fertilization, maintenance of genetic diversity and 

regulation of vegetation growth, once supported by 

wild large herbivores [2], are now sustained by free-

range livestock in areas where wild large herbivores are 

scarce or no longer present. However, due to strong 

socio-economic drivers resulting into rural-urban 

migration, an extensive abandonment of agricultural 

land is becoming problematic. The absence of large 

herbivores and the withdrawal from human activities 

increase fuel loads and promotes homogenization of 

vegetation in the affected areas, mainly the growth of 

shrubs, that are prone to fires and therefore especially 

dangerous in the dry climate of the Mediterranean 

Basin. Active re-introduction of herbivores into fire 

https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.
https://ourworldindata.org/food-ghg-emissions#:~:text=They%20are%20the%20direct%20emissions,for%2024%25%20of%20food%20emissions.


prone regions could serve as an environmentally 

sustainable and time and cost-effective method for 

wildfire prevention. Prescribed (or targeted) grazing is a 

silvopastoral practice that promotes heterogeneous 

landscapes, controls shrub encroachment and is 

officially considered as a wildfire prevention tool [3]. 

However, such interventions require thorough land 

planning, preventive management and regular 

monitoring for which a detailed land cover mapping is 

essential. Remote sensing is a primary source of data 

for vegetation mapping and thanks to continual 

developments in geo-information technologies this 

field is gradually becoming more universal. Limitations 

that satellite-based systems face, such as insufficient 

spatial, spectral and temporal resolutions, cloud cover 

or high cost of data acquisition, are resolved with the 

emergence of a new remote sensing aerial platform – 

unmanned aerial vehicles (UAVs). UAVs have very high 

spatial resolutions thanks to their low speed and flight 

altitude, they are cheaper, more flexible in obtaining 

data from target areas that are often difficult to reach, 

they minimize disturbances of inspected areas and 

provide real-time monitoring [4]. Acquired data is often 

used in combination with Artificial Neural Networks 

(ANNs), that have the capacity to speed up evaluation 

process of the input information even over large 

datasets. That is why these methods are becoming a 

fundamental tool in numerous fields from wildlife 

conservation and management and various agricultural 

applications to fire detection.  

1.1 Case study: Quinta da França 

This thesis uses a case study farm, Quinta da França, 

that integrates agricultural and forest land uses. The 

farm’s management is guided by sustainability 

principles and focuses on promoting environmental 

services provided by agroforestry activities and 

sustainable forest management2.  

It maximizes synergies between forest production and 

agricultural production, that enhances multiple 

environmental services. In a big emission offset 

program in collaboration with EDP that ran from 2006 

to 2012, the farm’s forest area captured 7000 tons of 

CO2/year, demonstrating that the provision of 

environmental services (in this case natural 

agroforestry carbon sink) can be a competitive 

agricultural market product.  

The management of the forest, that experienced two 

big fire events in 80’s and in 1996, is focused on the 

reduction of fire risk, increase of carbon sequestration, 

 
2 https://www.terraprima.pt/en/sobre-nos/ 

and biodiversity conservation. Vegetation cover and 

level of development is heterogenous. Trees are 

dominant and often accompanied by dense understory, 

which increases their vulnerability to fire spread and 

requires management measures to reduce that risk, 

namely the regular removal of shrub cover. The use of 

livestock for biomass regulation is now being 

implemented through targeted grazing and its impact is 

under investigation also within the forest site.  

1.2 Objectives 

The aim of this thesis is to develop a method for high 

resolution mapping of land cover in a forest area with 

heterogenous land cover composition, with a focus on 

fire prone shrub vegetation. A classifier of the target 

vegetation type (i.e. shrubs) in the areas susceptible to 

fire will be created based on exemplary data from UAV 

imagery, that can recognize the corresponding patterns 

in new images. Maps of vegetation cover will then serve 

as a foundation for better informed landscape planning 

and grazing management and for research of innovative 

ways of integrating livestock production, biodiversity 

conservation and fire prevention in fire prone 

landscapes in the Mediterranean regions.  

The main objectives and contributions of this work are:   

• Classification of fire-prone vegetation type (shrubs) 

from natural color UAV images – creating manually 

labeled dataset for training, validation and testing, 

using semantic segmentation; 

• Using supervised learning approach to train a CNN 

(U-net) to automatically detect the key vegetation 

type in new images; 

• Developing a method to increase the detection 

accuracy; 

• Evaluating the feasibility and performance of the 

detection of an irregular shrub cover in a complex 

heterogeneous landscape.    

 

2. Related work 

Semantic segmentation is the most interesting type of 

image analysis for the land cover classification tasks, 

able to learn also spatial configuration of labels and 

class-specific structures [5]. The detection can be either 

of one specific class [6] or multiple classes at the same 

time [7]. Two big remaining challenges of the existing 

methods are intra-class inconsistency and inter-class 

indistinction [8]. 

https://www.terraprima.pt/en/sobre-nos/


One of the main research topics nowadays is how to 

provide pixel-level high-resolution segmentation. Two 

approaches try to address this problem – 1.) using 

dilated (atrous) convolution and 2.) connecting pooling 

and un-pooling layers, e.g. DeconvNet, SegNet or U-Net 

[9]. Among the first networks focusing on semantic 

segmentation was a fully convolutional network (FCN) 

[10]. It uses traditional CNN as a feature extractor but 

replaces the fully connected layers with up-

convolutions, producing spatial feature maps instead of 

classification scores, that are further up-sampled to a 

dense pixel-wise output. Improvement of the FCN is 

already mentioned SegNet [11], that consists of an 

encoder part, extracting spatial features, and a decoder 

part, up-sampling the feature maps. Similar to FCN and 

SegNet is a fully convolutional semantic segmentation 

network U-Net [12], that will be discussed further in the 

next section. SegNet and U-Net are able to densely label 

every pixel at the original resolution of the image 

thanks to their down-sample-up-sample architecture. 

High-level representations are learnt via convolutions 

and then up-sampled back to the original resolution via 

deconvolution. These nets are computationally efficient 

and able to learn spatial dependencies among classes. 

Their drawback is low geometric accuracy [13]. Other 

approaches are presented by [14] and their multi-scale 

FCN or [15] DeepLab with atrous convolutions for the 

semantic segmentation.  

The research on how state-of-the-art classification tools 

perform in complex land cover mapping tasks is 

generally scarce [16]. Shrubs class is a very general and 

heterogeneous group of vegetation with individuals of 

variable shapes, sizes, and distribution patterns, 

forming irregular and complex clusters of individuals 

[17]. High intra-class and low inter-class variance is a 

challenge causing difficulties to distinguish them from 

their surroundings [18] or other vegetation classes. [16] 

used multispectral data, containing more 

complementary information, as a way to alleviate the 

problem of classification of spectrally similar vegetation 

types. They also found InceptionResNetV2 as the most 

efficient state-of-the-art convnet (compared to 

DenseNet121, InceptionV3, VGG16, VGG19, Xception 

and ResNet50) for classifying complex multispectral 

remote sensing wetlands scenes, when it reached an F1 

score of 93%. In their pursuit of maximizing the 

distinction between the target vegetation type (weeds) 

and the surroundings, [18]  proposed to consider 

phenological stage highlighting the differences in the 

vegetation appearance as the most promising 

 
3 https://en.climate-
data.org/europe/portugal/covilha/covilha-6944/ 

approach, but also performing the survey at lower flight 

altitudes (below 100m [19]) or using higher resolution 

sensor to obtain more detail. 

A study with similar objective to this work – shrubs 

detection is [17]. Objects of interest are Ziziphus lotus 

shrubs, however, it is surrounded by bare soil with 

sparse vegetation unlike shrubs in my case, that are 

located irregularly in a complex heterogeneous 

landscape. After combining GoogleLeNet with data 

augmentation, transfer learning (fine tuning) and pre-

processing, F1 score of 97% was achieved. Pre-

processing techniques improving the detection 

performance the most were background elimination 

and long-edge detection, and only random flipping, 

scaling, cropping and brightness were used for data 

augmentation.   

 

3. Materials and methods 

3.1 Study area 

Quinta da França is a 500 ha property in a mild climate 

of Castelo Branco District. Summer is a critical season 

regarding the risk of forest fires, with the average 

temperature reaching 22.2°C and only 10 mm of rainfall 

in August3. 

Figure 1 shows the division of the farm into three main 

zones:  

1. Quinta de Cima: Northwest area with beef 

production and grazing pastures.  

2. Quinta de Baixo: South area with cattle and sheep 

production and pastures.  

3. Serra: Northeast area with oak forest.  

 

Figure 1 Left: Location of Quinta da França in Portugal 
(Source: QGIS). Right: Zones of the farm – Quinta de cima 

https://en.climate-data.org/europe/portugal/covilha/covilha-6944/
https://en.climate-data.org/europe/portugal/covilha/covilha-6944/


(blue), Quinta de Baixo (green) and Serra (red). The black point 
depicts the location of the test data used in this thesis (Source: 
Terraprima -Sociedade Agrícola Lda., 2012) 

The forest in Serra, previously closed for animals, was 

divided into two parcels in January 2018: a southern 

grazing parcel, to test the effect of cattle presence on 

vegetation structure (grazing, trampling, etc.), and a 

northern parcel without grazing. In June 2018 the 

grazing parcel was opened for cattle. Mechanized 

removal of shrubs is maintained at both parcels. 

3.2 Data description 

The images were acquired by hexacopter with two 

cameras: VIS GITUP2 camera with RGB filter (370 – 680 

nm) and 170° lens (fish-eye) and NIR Mapir Survey2 

NDVI camera (Red: 660 nm, NIR: 850nm), with 90° lens. 

16MP ((4608 x 3456) px) sensor Sony Exmor IMX206 

(Bayer RGB) was used. The flight altitude relative to the 

take-off point was 120m, velocity 5m/s and photos 

were taken every 5s. The drone was assembled by 

Terraprima. 

The set was composed of 21 (4608 x 3456) px original 

TIFF images in RGB, which were captured for the same 

test area during a single flight, that took place in August 

2019. Some of the drawbacks of these images were 

fisheye and motion blur, which caused distortion and 

made the annotation more challenging, especially in 

peripheral areas of the images. This thesis uses ordinary 

RGB images. Limited number of spectral channels 

makes the presented method more convenient for use 

in combination with most aerial imaging systems, 

including off-the-shelf UAVs and wider range of data.    

The images were converted into PNG format and sliced 

into smaller square-shaped tiles with dimensions (800 x 

800) px, corresponding to approximately (50 x 50) m 

patches of land. The tile size was chosen based on the 

size of the objects of interest and the amount of 

context. The code can be found at https://github.com/ 

aggiungi1procione/Thesis---Shrub-detection-with-U-

Net. In total, 630 tiles were generated from the original 

images and 13 were selected for labelling. All 13 tiles 

came from the same image and were chosen as the best 

representation of all different land-cover configuration 

present in the image. Four land cover classes were 

identified: shrubs, trees, shadows and rocks. Labelbox4 

was used for labelling and managing the training data. 

Figure 2 is an example of the dense pixel-level semantic 

segmentation maps. The binary masks of labelled tiles 

 
4 https://labelbox.com/ 
5 Marcus D Bloice, Peter M Roth, Andreas Holzinger, 
Biomedical image augmentation using Augmentor, 

were download for all the classes into separate class 

folders. 

The central issue of labelling that could significantly 

impact the classification results is faulty labelling. 

Challenging was mainly visual interpretation and 

distinguishing between shrubs and other vegetation 

species, incoherent labelling of shadows that coexisted 

within other classes, interpretation of border parts of 

classes and border regions of skewed images. 

 

Figure 2 An example of a labelled tile and its binary masks. Up-

left: original image tile, up-right: labeled image tile (red - 

shrubs, orange - trees, yellow - shadows, light yellow - rocks). 

Bottom (from left): binary mask of shrubs, trees, shadows and 

rocks 

Subsequently, five sub-datasets with different sized 

patches were sliced from these tiles: A with 832 (100 x 

100) px patches, B with 208 (200 x 200) px patches, C 

with 117 (300 x 300) px patches, D with 52 (400 x 400) 

px patches and E with 52 (500 x 500) px patches.  

Data augmentation was then applied to each sub-

dataset, generating three sets per each with the size of 

around 800, 1600 and 3800 samples. Techniques used 

for augmentation were random rotations, skews, flips, 

random brightness, elastic distortions and shears from 

the Augmentor5 library. Figure 3 summarizes all the sets 

that were created. 

Bioinformatics, 
https://doi.org/10.1093/bioinformatics/btz259 

https://github.com/%20aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/%20aggiungi1procione/Thesis---Shrub-detection-with-U-Net
https://github.com/%20aggiungi1procione/Thesis---Shrub-detection-with-U-Net


 

Figure 3 Flowchart of the development of the final sub-

datasets for experiments 

Test datasets were created in the same way from two 

additional sets of data that were obtained later: winter 

images from December 2019 and summer images from 

August 2020. Four test sets were created in total:  

1. Using one (800 x 800) px tile from the same image 

from which training tiles were taken  

2. Using two (800 x 800) px tiles from other images 

that were taken during the same flight, as the 

previous image 

3. Using two (800 x 800) px tiles from one image from 

the new summer set (August 2020)  

4. Using two (800 x 800) px tiles from one image from 

the new winter set (December 2019)  

The reasoning of the selection was to see the 

performance on highly similar data (1 and 2), on 

seasonally similar data (3) and on highly distinct data, 

taken during different phenological stage (4). 

3.3 Model 

A U-Net model6 (hereinafter the TGS U-Net) was used 

as a basis for the work. The model extracts features with 

convolutional layers in the encoding part and restores 

the original size of the image in the decoding part. The 

TGS U-Net uses the input image size (128 x 128 x 3) and 

gradually reduces its dimensions while increasing the 

depth (from (128 x 128 x 3) to (8 x 8 x 256)), and then 

gradually increases the dimensions and decreasing the 

depth (from (8 x 8 x 256) to (128 x 128 x 1)).  

The main building block of the TGS U-Net consists of 

two consecutive 2D convolutional layers with batch 

normalization and ReLU. Batch normalization was 

stated by the author7 to significantly improve the 

training. The number of filters starts at 16 and is 

 
6 https://github.com/hlamba28/UNET-TGS 
7 https://towardsdatascience.com/understanding-semantic-
segmentation-with-unet-6be4f42d4b47  

doubled at every convolution step. There are four such 

blocks in the encoder side, each followed by max 

pooling layer, that halves the image dimensions, and a 

dropout layer. The fifth convolutional block forms a 

bottleneck with the maximum depth and minimum 

spatial dimensions after which comes the decoder side, 

with four symmetrical deconvolution layers 

concatenated with the feature maps from the encoder 

side. After comes a dropout layer and the convolutional 

block, which helps the model to assemble a more 

precise output. The number of filters is halved at each 

step, while the resolution is doubled. Ultimately, the 

output of a binary classification is sigmoid, which 

assigns each pixel a probability of belonging to the 

target class. The model is trained with Adam optimizer 

with a learning rate of 1e-5. Predictions are compared 

to labels with binary cross entropy loss function. Early 

stopping is implemented if the validation loss doesn’t 

improve for 10 consecutive epochs to prevent 

overfitting. Learning rate is reduced when the 

validation loss doesn’t improve for five consecutive 

epochs. For each pixel the probability of belonging to 

the target class is calculated, with the threshold of 0.5. 

The dataset is split into training and validation set with 

the ratio 9:1. The validation set is never used in the 

training process, it is only used to evaluate the model's 

performance. There are 50 epochs with batch size of 32.  

A cloud service Google Colab was used for training and 

evaluating the model. The deep learning methods were 

implemented using Keras8 with TensorFlow9 backend. 

With the memory limit of 12GB and the time limit of 

12h that comes with the free version of the service, this 

thesis also aims to explore the set ups with a reasonable 

tradeoff between working within these limits and 

yielding good results. This increases the usability and 

practicality for future students with limited access to 

advanced virtual machines that would like to build upon 

or further extend this thesis.       

 

4. Results and discussion  

This section presents methods used in order to improve 

the detection results. The main evaluation metric is F1 

score (Equation (1)), is a class-specific measure of 

segmentation accuracy, suitable for unbalanced 

datasets like the ones used in this thesis. 

8 https://keras.io/ 
9 https://www.tensorflow.org 

https://github.com/hlamba28/UNET-TGS
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47


 
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (1) 

where 
precision: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

and recall: 
 𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 where TP means true positives, FP false positives and 

FN false negatives. 

4.1 Sub-dataset A 

The TGS U-Net was trained on the 832 sample datasets 

of all four classes separately and for the target class – 

shrubs also on the 1664 and 3832 sample datasets. The 

model input dimensions were (128 x 128) px.  

The shrub class demonstrated that the performance 

rises with the growing size of dataset, with F1 = 0.31 for 

the smallest, and F1 = 0.68 for the biggest dataset. This 

is not a surprise – the model has more examples to 

learn from and the data augmentation aids in encoding 

more invariance, making the learning more robust. 

However, the tree class significantly outperformed 

shrubs even with the non-augmented 832 sample 

dataset (F1 = 0.83). The reason for that can be that trees 

were a much more balanced class without any artificial 

adjustments to the data, with 48.58% pixel 

representation across the dataset, while shrubs only 

account for 20.99%, but more importantly trees seem 

to be simply more distinct to other classes and suffer 

less from high intra- and low inter-class variance. In 

general, sub-dataset A performed poorly in comparison 

to other sub-datasets. Small patches probably failed to 

capture enough of spatial detail and fine-grained 

boundaries between the class and the background. 

There are assumably too many patches consisting of 

only a part of one object, not capturing enough of the 

context. Moreover, contrary to the other sub-datasets 

the patches here are up-scaled (from 100 to 128 px), 

which can bring more blur into them, making it even 

more difficult to see relevant patterns. On the top of 

that, scales larger than one don’t incur much 

performance improvement because there is no 

additional information gained, and instead they occupy 

more space in GPU [20].   

4.2 Sub-datasets B-E 

This was a set of 21 experiments exploring the impact 

of the patch size and rescaling of the model input on the 

performance. Data augmentation was also assessed 

simultaneously. Only the shrub class of sub-datasets B-

E was used. Due to the time and computational 

constraints some experiments were omitted even 

though they exhibited the best performance (mainly 

the big datasets with 3808 samples). The total number 

of parameters was 1.18 million for all experiments. The 

assumptions were the following: 

1) The patch size: 

a) Building on the studies of [21] and [22], the 

accuracy is expected to improve with 

increasing patch size, because bigger patch 

captures more spatial context. This is 

illustrated in Figure 4.  

2) The model input size: 

a) Resizing images to smaller resolutions may 

lead to a loss of information [23]. Reina et al. 

(2020) indeed achieved a better performance 

with minimal down-scaling,  

b) whereas according to [24] and [25], down-

scaling the input patch can benefit the results 

by better filtering the relevant spatial patterns. 

This can, therefore, depend on the content of 

the images and what is the target group. The 

goal was to find out which approach would 

work for the data used in this thesis.    

Tested scales were 1:1 (patch size close to the original 

tile size) according to [22], and 1:2 according to [25]. 

Because the input has to be compatible with the 4 max-

pooling layers contained in the architecture of the TGS 

U-Net, and therefore must be divisible by 24, the scales 

were not always exactly that. 

 

Figure 4 Examples of patches with different sizes (from left: 
sub-dataset A, sub-dataset B, sub-dataset C, sub-dataset D, 
sub-dataset E) 

The results evidently support data augmentation as a 

means of improving the performance. The biggest 

differences among F1 scores of models trained on the 

same sub-dataset were between 808- and 1658-

instance datasets, while it begins to plateau at 3808 

samples (Figure 5). Apparently, there is not sufficient 

amount of information in the 808 sample datasets, 

whereas doubling it to 1658 seems to be already 

satisfactory and expanding it even further does not 

anymore yield such big differences in the F1 score.   



 

Figure 5 Impact of data augmenting and a patch size on F1 
score. Model input: (128 x 128) px 

Random data augmentation generates different data 

every time and could be treated as another 

hyperparameter, since changing the deformation types 

[22] or their argument values could yield different 

classification results. Increasing the patch size beyond 

(300 x 300) px proved not to be justified anymore, since 

it didn’t improve the classification results, similarly as in 

case of [18], instead it increased time and 

computational requirements. 

Degrading images into too small resolutions 

significantly hampered the ability to detect structures 

and textures. The closer was the size of the rescaled 

patch to the original size, the higher F1 score was 

achieved. This is especially important in cases where 

the size of the objects of interest is already small [14] or 

where downscaling would lead to a loss of relevant 

context information [22], [23]. However, it is an 

interesting technique for shortening the training time 

[14] and the scale 1:2 is a good tradeoff between the 

little drop in performance and a shorter training time 

[25]. The three best performing models (F1 = 0.90) that 

can be seen in Figure 6, took 50, 46 and 60 hours to train 

and qualitatively didn’t bring much of a value.  

 

Figure 6 Impact of down-scaling on F1 score 

The configuration of pre-processing techniques yielding 

the best results depends on the problem and on the 

object of interest [17]. Finding an optimal set of these 

methods for this particular problem would require 

further exhaustive research, but could bring a lot of 

benefit. In overall, inaccurate labelling certainly was 

one of the most important factors affecting the 

performance. High quality labels remain to be one of 

the central elements of image classification success. 

The best tradeoff between training time and 

performance was achieved by model using sub-dataset 

C with 1664 (300 x 300) px samples with 50% reduction 

in spatial dimensions (C-1664_144x144). It achieved 

validation F1 score of 0.82 in about four hours of 

training.  

4.3 Balancing the dataset 

The impact of creating training datasets with different 

target class representations on the model’s 

performance is studied in this part. Non-augmented 

sub-dataset C (117 samples) was filtered out of samples 

containing less than 1% [26] and less than 45% [27] of 

shrub pixels. Under-sampling method was used. 

The experiment showed dropping performance metrics 

with the increasing proportion of the shrub class 

representation in the dataset. The learning process 

seemed to be not robust enough, possibly because the 

used sub-dataset was created with heavy augmentation 

beacuse only 15 patches contained more than 45% 

shrub pixels, which significantly lowered down the 

representativeness of already small data sample. This 

small sub-dataset surely didn’t effectively cover the 

different arrangements of land cover in such a diverse 

heterogeneous scene as was present in the study data, 

which means the model’s recognizing abilities may not 

be sufficient with new data. The under-sampling had 

definitely led to the loss of important information.   

5. Hyperparameter tuning 

This section addresses the impact of different initial 

number of filters, dropout rate and batch size on the 

performance. The search was manual using the 

following values: 

1. The initial number of filters: 16, 32 and 64 [26]. The 

total number of parameters in the models was 

1.18, 4.71 and 18.82 million, respectively. 

2. The dropout rate: 0.05, 0.2, 0.5 and 0.75 [28] [26]. 

3. The batch size: 15, 32 [29]–[31] and 50. 

Similarly to the case of [26], adding more filters 

improved the performance only until certain point (32 

filters) after which it started to drop (64 filters), 

disagreeing with the general notion that deeper 

networks achieve better accuracies [9]. Using more 
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filters made the network deeper and more 

complicated, which was probably not necessary for my 

kind of data or brought too many weights for the 

amount of available data that could cause overfitting. 

The F1 score of the best performing model with 32 

filters was 0.84 but took 10 hours to train, while the 

model with 16 filters achieved 0.82 F1 score in half the 

time. The metrics generally worsened with the 

increasing dropout rate. With a difficult task that 

includes a landcover as complex as the one present by 

the data used in this thesis, the more neurons facilitate 

the learning process the better. Therefore, using high 

dropout rates might not be a reasonable choice in 

problems like this one. Batch size is a hyperparameter 

that, as many others, depends on many factors such as 

the type of a problem or data. Some [31] reported the 

best results when using batch size as small as 2 or 4, 

while others [32] favored batch sizes as big as 128. The 

batch size in didn’t have much of an impact on the 

results in this study. Taking into account that further 

exploration of a batch size tuning would be reliant on 

computational resources and that the batch size of 32 

is generally recommended as an optimum, further 

experimenting with this hyperparameter are not 

necessary in this particular case.  

There are many other hyperparameters that could be 

further explored in order to improve the classification 

results, but the optimal model generally depends on 

the used data10, so it is not only important to tune the 

hyperparameters, but also to choose them diligently, 

since some of them may have significant impact on the 

results while others can have almost none.   

6. Test data 

In this final test phase, all experiments were evaluated 

on independent tests sets described in 3.2 

As expected, models performed worse on the new data. 

The reason is that the test data didn’t come from the 

same dataset as training and validation data (excluding 

test set 1). The best average performance of all the 

experiments was achieved by test set 2 (F1 = 0.70), 

while test sets 1 and 3 performed equally. The biggest 

culprit behind the gap between validation and test 

results turned out to be an unlucky pick of testing 

patches that were somehow different from train and 

validation sets, e.g. had a different distribution of the 

vegetation. Patches in the test set 3 came from different 

images taken in a different year, that was most likely the 

single biggest factor worsening the performance. The 

 
10 https://jakevdp.github.io/PythonDataScienceHandbook 
/05.03-hyperparameters-and-model-validation.html 

best evaluations were on test set 2 because these 

images were taken on the same day as the training 

ones. The image from which training and validation 

patches were derived didn’t supply various enough data 

and the patches were an unrepresentative sample of 

the shrub patterns in the area. A more robust model 

could have been obtained by training on a larger 

dataset of patches derived from different images, taken 

on different days and in different years, that would 

improve the representativeness of the data and could 

have increased the variety of features to learn. The 

winter images were too different to be extrapolated 

from the summer data. A separate model would be 

necessary.  

Higher testing performances (0.76 to 0.77) were 

generally achieved by models using bigger patch sizes 

and model input dimensions, in accordance with the 

validation results from the 4.2 section. Data 

augmentation, patch size and model input dimensions 

(i.e. down-scaling) proved to be beneficial for the 

training and classification performance. The 

hyperparameter tuning didn’t bring any significant 

improvements in the performance, neither for 

validation, nor for test sets. Generally, the gap between 

validation and test scores are relative to the data, 

selected metrics and models11. 

 

7. Conclusion  

This thesis explored the potential of detecting the 

target vegetation type in a complex heterogeneous 

landscape with U-Net. Shrubs are wild plants with 

different shapes, sizes and distribution patterns. The 

difficulty of this task was increased further with the fact 

that the data contained more than species of shrubs 

scattered in the forest area. Shrubs are of a priority 

interest in terms of fire risk in dry Mediterranean 

regions and mapping them can serve as a basis for 

better informed land management and reduction of the 

forest fire hazard. This work consisted of two main 

parts: creating and manually labelling the datasets and 

developing a method to increase a detection accuracy 

using a U-Net neural network. The impact of data 

augmentation, tiling, rescaling, balancing the dataset 

and hyperparameter tuning (number of filters, dropout 

rate and batch size) was explored in this regard. 

The beneficial methods were: 

11 https://machinelearningmastery.com/the-model-
performance-mismatch-problem/  

https://jakevdp.github.io/PythonDataScienceHandbook%20/05.03-hyperparameters-and-model-validation.html
https://jakevdp.github.io/PythonDataScienceHandbook%20/05.03-hyperparameters-and-model-validation.html
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• Data augmentation: The biggest datasets 

containing 3808 samples yielded the highest F1 

scores 

• Patch size: (300 x 300) px was the optimum. 

Patches bigger than that didn’t bring any significant 

improvement in performance, instead it increased 

the training time and computational demands 

• Down-scaling: Degrading the image resolution 

leads to a loss of information, but the scale 1:2 

significantly decreased the training time and didn’t 

lead to a dramatic drop in performance.   

Major identified limitations were a very little labelled 

data insufficient for learning of all the important 

features from scratch and incorrect labels. Using bigger 

datasets with patches derived from several images 

taken during multiple flights could have a significant 

positive effect on the results. 

Based on the results achieved in this thesis I believe that 

further improvements in performance could be 

achieved by: 

• Further enlargement of the datasets, primarily as a 

result of more labelled data from spatially 

independent samples, but also by employing more 

data augmentation 

• Finding an optimal configuration of the 

augmentation techniques suitable for these data 

• Finding an optimal configuration of pre-processing 

methods as well as hyperparameters for this 

particular data and task  

• Employing transfer learning 

This thesis demonstrated the capacity of U-Net for 

mapping the irregular shrub cover, presented methods 

improving the classification results and provided 

recommendations for a future research. The work has a 

potential to serve as an information tool for land 

planning and grazing management and could be also 

modified and repurposed to map other vegetation 

types, such as trees, or to be used as e.g. a forest 

inventory tool.   
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